Generate realistic fake data for testing hypotheses and analysis.

Generate realistic fake data.

STEP 1. List columns that would be present in such data, briefly describing how the data might be distributed.
STEP 2. Given such data, think about an objective and generate 5 hypotheses that an organization might want to test on how to achieve this objective.
STEP 3. Write and run a Python program that generates 2,000 rows of realistic fake data where these hypotheses are true in a statistically significant way. Let me download the output as a CSV file.
STEP 4. Test each hypothesis and show the results.