Humans have taught LLMs well

Human LLM Bullshitting: Humans confidently assert wrong information, from flat-earth beliefs to misremembered historical “facts” and fake news that spread through sheer conviction Hallucination: LLMs generate plausible but factually incorrect content, stating falsehoods with the same fluency as facts People-Pleasing: Humans optimize for social harmony at the expense of honesty, nodding along with the boss’s bad idea or validating a friend’s flawed logic to avoid conflict Sycophancy: LLMs trained with human feedback tell users what they want to hear, even confirming obviously wrong statements to avoid disagreement Zoning Out: Humans lose focus during the middle of meetings, remembering the opening and closing but losing the substance sandwiched between Lost in the Middle: LLMs perform well when key information appears at the start or end of input but miss crucial details positioned in the middle Overconfidence: Humans often feel most certain precisely when they’re least informed—a pattern psychologists have documented extensively in studies of overconfidence Poor Calibration: LLMs express high confidence even when wrong, with stated certainty poorly correlated with actual accuracy Trees for the Forest: Humans can understand each step of a tax form yet still get the final number catastrophically wrong, failing to chain simple steps into complex inference Compositional Reasoning Failure: LLMs fail multi-hop reasoning tasks even when they can answer each component question individually First Impressions: Humans remember the first and last candidates interviewed while the middle blurs together, judging by position rather than merit Position Bias: LLMs systematically favor content based on position—preferring first or last items in lists regardless of quality Tip-of-the-Tongue: Humans can recite the alphabet forward but stumble backward, or remember the route to a destination but get lost returning Reversal Curse: LLMs trained on “A is B” cannot infer “B is A”—knowing Tom Cruise’s mother is Mary Lee Pfeiffer but failing to answer who her son is Framing Effects: Humans give different answers depending on whether a procedure is framed as “90% survival rate” versus “10% mortality rate,” despite identical meaning Prompt Sensitivity: LLMs produce dramatically different outputs from minor, semantically irrelevant changes to prompt wording Rambling: Humans conflate length with thoroughness, trusting the thicker report and the longer meeting over concise alternatives Verbosity Bias: LLMs produce unnecessarily verbose responses and, when evaluating text, systematically prefer longer outputs regardless of quality Armchair Expertise: Humans hold forth on subjects they barely understand at dinner parties rather than simply saying “I don’t know” Knowledge Boundary Blindness: LLMs lack reliable awareness of what they know, generating confident fabrications rather than admitting ignorance Groupthink: Humans pass down cognitive biases through culture and education, with students absorbing their teachers’ bad habits Bias Amplification: LLMs exhibit amplified human cognitive biases including omission bias and framing effects, concentrating systematic errors from their training data Self-Serving Bias: Humans rate their own work more generously than external judges would, finding their own prose clearer and arguments more compelling Self-Enhancement Bias: LLMs favor outputs from themselves or similar models when evaluating responses Via Claude

Yearly Goal Tracking FAQ

I track my yearly goals by publishing and emailing them to my contacts: My year in 2020 My year in 2021 My year in 2022 My year in 2023 My year in 2024 My year in 2025 Here are questions people have asked about my goal tracking. How do you know that you have achieved the Better Husband tag? In 2024, she said that I was “definitely worse in 2023 than 2024.” ...