Problems that only one student can solve

Jaidev’s The Bridge of Asses reminded me of my first coding bridge. It was 1986. I’d completed class 6 and was in a summer coding camp at school. M Kothandaraman (“MK Sir”) was teaching us how to swap variables in BASIC on the BBC Micro. This code prints the first name in alphabetical order (“Alice”): 10 A = "Bob" 20 B = "Alice" 30 IF A > B THEN 40 TEMP = A 50 A = B 60 B = TEMP 70 END 80 PRINT A The homework was to print all details of the first alphabetical name: ...

The Surprising Power of LLMs: Jack-of-All-Trades

I asked ChatGPT to analyze our daily innovation-call transcripts. I used command-line tools to fetch the transcripts and convert them into text: # Copy the transcripts rclone copy "gdrive:" . --drive-shared-with-me --include "Innovation*Transcript*.docx" # Convert Word documents to Markdown for f in *.docx; do pandoc "$f" -f docx -t gfm+tex_math_dollars --wrap=none -o "${f%.docx}.md" done # Compress into a single file tar -cvzf transcripts.tgz *.md … and uploaded it to ChatGPT with this prompt: ...

Measuring talking time with LLMs

I record my conversations these days, mainly for LLM use. I use them in 3 ways: Summarize what I learned and the next steps. Ideate as raw material for my Ideator tool: /blog/llms-as-idea-connection-machines/ Analyze my transcript statistics. For example, I learned that: When I’m interviewing, others ramble (speak long per turn), I am brief (less words/turn) and quiet (lower voice share). In one interview, I spoke ~30 words per turn. Others spoke ~120. My share was ~10%. When I’m advising or demo-ing, I ramble. I spoke ~120 words per turn in an advice call, and took ~75% of the talk-time. This pattern is independent of meeting length and group size. I used Codex CLI (command-line tool) for this, with the prompt: ...

LLMs as Idea Connection Machines

In a recent talk at IIT Madras, I highlighted how large language models (LLMs) are taking over every subject of the MBA curriculum: from finance to marketing to operations to HR, and even strategy. One field that seemed hard to crack was innovation. Innovation also happens to be my role. But LLMs are encroaching into that too. LLMs are great connection machines: fusing two ideas into a new, useful, surprising idea. That’s core to innovation. If we can get LLMs daydreaming, they could be innovative too. ...

Meta AI Coding: Using AI to Prompt AI

I’m “meta AI coding” – using an AI code editor to create the prompt for an AI code editor. Why? Time. The task is complex. If the LLM (or I) mess up, I don’t want re-work. Review time is a bottleneck. Cost. Codex is free on my $20 OpenAI plan. Claude Code is ~$1 per chat, so I want value. Learning. I want to see what a good prompt looks like. So, I wrote a rough prompt in prompts.md, told Codex: ...

Giving Back Money

At the end of my 2021 graduation interview, All India Radio asked: Interviewer: What would, if you are asked to give back something to the country, what would be that? Anand: I really don’t know. At this stage, I don’t know what I’m capable of and what I can contribute, but whatever it will be, I suspect the bulk of it will come later towards my career. ...

Vibe-coding is for unproduced, not production, code

Yesterday, I helped two people vibe-code solutions. Both were non-expert IT pros who can code but aren’t fluent. Person Alpha and I were on a call in the morning. Alpha needed to OCR PDF pages. I bragged, “Ten minutes. Let’s do it now!” But I was on a train with only my phone, so Alpha had to code. Vibe-coding was the only option. ...